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ABSTRACT

ad experimental study to compare the simplex method and
the Iemke's method to solve linear programs is made. The
M3 code for simplex method and the author's code for the
Lemke method were used in the study. Comparison was made
only with regard to the number of iterations each metho
takes and our little study shows encouraging results about
the superiority of Lemke method, but no general recommenda-
tion is made by the author due to size of the study and
data. A by-product of our study is a complementary pivot
algorithm to solve linear programs which is a modification
of the Lemke's method and which saves a considerable storage
and time of computation.




AN EXPERIMENTAL STUDY ON SOLVING LINEAR PROGRAMS
by

A. Ravindran

1. INTP MUCTION

From the beginning of the era of linear programming a lot of work has been
done to find a better and more efficient method to solve linear programs c(han
the simplex method of G. B. Dantzig [1] but without much success. Quite a few
papers have been published about the performance of the simplex method in terms
of the number of iterations or pivot steps. Kuhn and Quandt made a study to
test different pivot choices for the simplex code [4]; but strangely, the firm
theoretical bounds given in the papers are much higher than the actual number
encountered in practice. In spite of extensive computational experience, not
very much is known precisely about the performance of the simplex method, and
it is still considered to be the best known method to solve linear programs by
many workers in the field.

To add to this huge amount of literature on the study of the simplex
method, we have made 2 smal’ scale study to compare it with the 'complementary
pivotal method" of Lemke and Howson. Our main object has been to compare the
number of iterations in both cases. Our study revealed that generally Lemke
method is as efficient as simplex and 1in special class of A matrices
(viz A > 0) Lemke method takes as little as 1/2 to 1/3 the number of iterations
of simplex! This opens the door to further study of the Lemke method on a large
scale to solve linear programs. A by-product of our study is a modified
algorithm to that of Lemke-Howson to solve linear programs which will save a

considerable amount of storage and computation time.




To make this account self-contained, an exposition of the Lemke's method
in the form we have used (i.e., programmed*) is presented in Section 2. The
details of the statistical experiment and the results of our study are described
in Section 3. Our modified Lemke's algorithm is explained in Section 4.

The fact that led us to make this study is that the simplex method always
starts with a basic feasible solution [1]. In many problems in fact we do not
have an initial basic feasible solution readily available and to find one,
one uses the so called Phase 1 technique of Dantzig which means solving another
linear program with additional artificial variables. This Phase 1 is avoided
when one uses Lemke method as it is easy to find one "almost complementary

solution."

+An independent computer program was written in FORTRAN IV for the Lemke-Howson's

algorithm by the author.

i
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2. THE COMPLEMENTARY PROBLEM AND LEMKE'S ITERATIVE TECHNIQUE
- The following complementary problem was posed by Dantzig and Cottle in
1963 [2]
we= Mz + q
f
w>0,220 (1)

where M 18 (n x n) square matrix.

w,z,q Aare n-vectors.

It can be seen that linear programming, quadratic programming and bi-matrix

(2-person, nonzero-sum) games can be transformed to the above complementary
problem form,

Dantzig and Cottle in their paper [2].3130 proposed an algorithm which 1is
applicable to matrices M that have positive principal minors (in particular to
positive definite matrices) and after some modification (which uses the notion
of "block pivot") to positive semi-definite matrices. But we will be concerned
with the {terative technique of Lemke and Howson [4] for finding equilibrium
points of bi-matrix games which was later extended by Lemke [5] to the complementary
problem (1). We will essentially give the step by step procedure of the Lemke's
algorithm as presented by Gale [3] which is also used as the basis for the
computer code written. |

Consider the following linear program:

Minimize cx

Subject to Ax >

v
o

(2)

*
No special notation to denote the transpose of a vector is used throughout this paper.




Let A be m x n matrix, b 1s an m-vector, ¢ and x are n-vectors.

The ahove problem can be transformed into a complementary problem very

BEENINEN

uy + vx = 0

esasily as follows:

X,y,u,v > 0 i
where u-denotes the primal slack variables
y-denotes the dual variables
v-denotes the dual slack variables.
The reader will immediately note that system (3) represents primal and
dual feasibility and (4) represents the complementary slackness condition.

Comparing these to system (1) will show
0 A u! y -b
M '~ T , W= y 2 = »y q = -
-A" 0 v x c

It should bs: remarked here that M 18 a square nonsymmetric positive semi-
definite matrix of order m + n .

We shall now describe Lemke's method to solvg the original complementary
problem (1) which guarantees to terminate with a solution if it exists for the
followirg cases: (1) M > 0 (all elements), (1i) M {s positive definite,
(111) M having positive principal determinants, (iv) M 1is positive semi-
definite, (v) M co-positive. We shall first start with some definitions.

Let Byy ceey 8 denote the first n-column vectors of M matrix. €1s crer €

are the first n unit vectors.




o l

| Definition l: Complementary Solution

A solution (w,2Z) 2 0 satisfying w= Mz + q and for each 1 =1, ..., n
either e (&=>variable ui) or -a, (<=>variable zi) is in the basis and rot

both, 1.z., a solution to system (1).

Definition 2: Almost Complementary Solution

A solution (w,z) > 0, Zo >0 to the system w = Mz + e Z° + q where

e = (1, ..., 1) such that exactly for one 1 both e, and -a, are out of

(1xn) 1

the basis; and of course Zo is in the basis as Zo > 0.

i

Lemke'; algorithm starts with an almost complementary solution by adding

‘ the vector e Zo to w =Mz +q and using a complementary pivot rule (described

later) moves from one almost complementary solution to the other until it ﬂ
terminates which 1s given by the termination conditions described later.
The iritial almost complementary solution is found by augmenting the vector

e Zo to the system (1) as follows:

wWe-M -e Zo = q

w,z,zo >0

wez = (Q

The initial tableau with respect to the unit basis will be as follows:

Basis e & . . ) i
Vect°t8+ 1’ 2’ ce oy ‘) sesny n l ssev e an e q
el 1 -mll seve e -mln -1 ql
:2 1 -mzl R -mzn :1 q2
[ ] 1 _ ) :1
fs msl es 000 msn . qs
. °
en 1 -mnl see e s e -mnn -1 qn

TABLE 1




Note that the initial basis though complementary need not be feasible as some

q < 0.

Step 1:

-e vector (variable Zo) is brought into the basis so as to replace one

of 's , namely, ¢ from the basis where q, - Min (qi) . If

e
1 i=1,2,..,n

q, 2 0 then terminate. We have a complementary solution to (1) given by
v& - q Vi and zi = 0 ., Otherwise perform the pivot as shown below with
circled element as pivot element.

The pivot operation yields the following tableau

€108, ~ouy € 148 L€ 1y ccp € TB) ... 8 e | q

[} ) 1

e 1 -1 0 0 P LI 0 q
[ ] o [ ] ° °
F 01 -1 . . .
: 1 -1 0 J ¢ o
es-l Y A ¢
1] ’ L

-e -1 0 ,: LYo LI 1 q

e 1l 0
s+l 0 0 . , .
e 0 -1 0 1 LY - 0 q
] ]
where qs = -qs. q "9 - qs Viés
' -m
-3 . -
msj ) msj A\ | 1325 caey B
]
mij - —mij + msj vVyi=12, ..., n
Vié¢s.

Note q 2 0 Vi,




The corresponding basic solution LS SRR Vel ® qs-l'zo = QgrVayy " Q410

8
1
LA B is an almost complementary solution as both variables LA and z are

out of the basis, Zo >0 and w,z 2 0.

Step 2:
Since both the vectors -a, and e, are out of the basis, we bring in -a,
into the basis which will still maintain almost complementarity. To find the

vector leaving the basis, form the ratios

L
q '
—i— for { =1, ..., u and m, >0 Vo iimE e s o .
m
is
Let
L L
Q q

v = Min ——
]

mks mis

mia>0

then Yie leaves the basis. Obtain the new tableau by performing the pivot with
|

a, 8as the pivot element.

Step 3:

Now bring in -a, into the basis and continue as before until one of the
two things happen which indicates termination.

(1) Min ratio happens at the sth row and Zo leaves the basis. The

resulting basic solutior (after the pivot) 1s the complementary solution

to (1).

(11) All ™ for {=1,2, ..., n are < 0 => there exists no feasible

solution to the original problem (1).
In the coding of the algorithm there was a slight modification done. Instead

of doing the pivot operation to the whole tableau only the inverse of the basis




is kept in the memory and the pivot operations were done only to the inverse.
Similar ideas that are common in revised simplex method with explicit inverse are

employed.




3. _DESIGN, DATA AND RESULTS OF THE EXPERIMENT

In order to evaluate the statistical efficiency of the simplex method and
Lemke's method in solving linear programs, a number of linear programs were
generated randomly and the solutions computedf by both methods. The linear
programs generated we¢re of the form: Ax > b, x > 0 minimize c¢-x . Elements of
matrix A , vectors b and ¢ were chosen randomly from a uniform distribution
from O and 1. Matrices of size 5 x 5, 10 x 10, 15 x 15 were tried for the A
matrix. Initially, 10 problems for each size were generated and for each problem
and method the number of iterations and the means of iteration count for each

size matrix are noted. They are shown in the following tables.

fThe calculations were done on the IBM-7094 at the Computer Center, University of
California, Berkeley. The M3 code was used for the simplex method and the author's

i code for the Lemke method.
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Results of the Study

SIZE 5 x 5(A > 0) SIZE 10 x 10(A > 0)
No. of Iterations No. of Iterations
Prob. Simplex | Lemke Comment Prob. Simplex | Lemke Comment
No. Method Method No.

1 14 3 Optimal Sol. 1 25 9 Optimal Sol.
2 10 7 " 2 28 9 "
3 10 11 K 3 29 9 "
4 14 7 " 4 29 15 "
5 11 5 0 5 24 13 " |
6 11 7 " 6 27 17 £
7 9 5 % 7 23 13 i
8 12 5 " 8 33 7 " ) L
9 10 9 bl 9 25 11 4
10 12 15 4 10 26 15 4

Average | 11.3 7.4 1.52-8%:%11:? Average 26.9 | 11.8 | 2.27.EMRex

SIZE 15 x 15(A > 0) SIZE 15 x 15@8;{2*;: j g)
P;g?. Simplex | Lemke Comment P;z?. Simplex | Lemke Cement

1 48 13 Optimal 1 22 41 Optimal
2 48 15 " 2 33 27 Optimal
3 52 17 W 3 22 13 Infeasible
4 47 15 - 4 30 » | Optimal
5 57 13 " 5 35 33 Optimal
6 43 11 " 6 21 18 Infeasible
7 49 17 " 7 14 17 Infeasible
8 46 23 " 8 30 31 Infeasible
9 45 21 " 9 24 27 Infeasible .
10 46 21 " 10 33 35 Infeasible

Average | 8.1 16.6 |2 . 2.89 |[Average 26.4 | 27.3 | E2. 96
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80% of A =0

SIZE (15 x 15) Hor O A : SIZE (15 x 15) 10% of A > 0

10% of A < O

No. of Iterations No. of Iterations
Prob. Simplex | Lemke Comment Prob. Simplex | Lemke Comment
No. No.
1 24 43 Optimal 1 19 17 Infeasible
! 2 22 1 Infeasible 2 26 11 Infeasible
3 26 15 Optimal 3 11 15 Infeasible
4 30 19 Optimal 4 9 3 Infeasible
5 36 19 Optimal S 20 7 Infeasible
6 22 7 Infeasible 6 17 13 Infeasible
7 18 25 Infeasible 7 20 19 Infeasible
8 19 17 Infeasible 8 9 1 Infeasible
9 24 1 Infeasible 9 8 17 Infeasible
10 50 24 Optimal 10 13 1 Infeasible
Average 271 | 17.1 | 1.s8 Average 15.2 | 10.4 s—iﬂe‘iﬁ’i = fliri6
_ Simplex
Lemke

e ——— e
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Discussion of the Results

The previous tables show when the matrix A was positive, the simplex
method takes 1.52 times for 5 x 5, 2.27 times fouv 10 x 10 and 2.89 times for 15 x 15
more number of {terationt compared to Lemke method and hence Lemke method seems
more efficient in the number of iterations. The best reason may be that the
Lemke method avoids the Phase 1 procedure of simplex method and for A > 0 1t is
possible to get an easy feasible solution to the primal even if we do not use
simplex Phase 1. During our discussions with Dantzig (7] it was suggested that
we should try some matrices with a lot of zero entries. And even in that excepting
502 positive and negative entries of A matrix, :n all the other cases, Lemke
method appears to be more efficient even in finding a basic feasible solution
compared to Phase 1 procedure. Since the research was directed at one aspect of
the methods (viz No. of iterations) and the data are based on the statistics of
one class of linear programs, we do not make any conclusive recommendation
about the efficiency of either method for solving linear programs. But our little
study has evidently shown that the results we have are very encouraging to do a

large scale study about these two methods for future investigation.
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4, A MODIFIED APPROACH TO SOLVE LINEAR PROGRAMS BY LEMKE'S METHOD

We observed in Section 3 that when the A matrix is strictly positive, it
is worthwh!{le solving the linear program by Lemke method and in other classes of
A matrices both methods are equally good. The only question that can be raised
is obviously the fact that we are working with a larger size of the matrix
(actually twice the size of A matrix when A 1is square) when using Lemke's
miethod. The larger size will definitely create problems of storage and time of
computation. So further investigations were carried out to see whether it is

possible to work with a reduced M matrix where M = [0 T A] .
-A" 0

The first observation was that the '"nice'" structure of the M matrix is

destroyed immediately after the first pivot when -e vector enters the basis

(refer to Figures 1 and 2 of Section 2). So the first occurred idea was to take

the -e vector to the right-hand side, perturbate it with the q vector and

consider Z_ = as a "parameter."

The second observation was that 1f we work with the "perturbed' problem,
the "nice" property of M matrix (i.e., the two submatrices below and above main
diagonal are skew symmetric) can be retained by rearranging the columns such that
the basis columns (identity matrix) appear first, These observations led to the

following modified algorithm which works only with the reduced matrix of M which

results in a greater saving in storage and time and answers the question raised
about the Lemke method at the beginning of the section. We shall present the
modified algorithm completely independent of the complementary pivo* theory.

But those who are familiar with the complementary pivot theory can see that it

is nothing but the Lemke method with a slight modification in the pivot rule and

is applied only to the reduced M matrix(viz the transpose of A 1s never carried

in the pivots.)
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A Complementary Pivot Algorithm

Consider

Min cx
where A {s (m x n) matrix ¢ and x are n vectors b is m vector

A= ('11} .

Let

Ujs eees U denote primal slacks

Ype coes Vg denote dual variables

Vis cees Vo denote dual slacks

the vectors u and y"(z O)' are complementary pair of vectors, i.e., in the

solution u Y " 0V {=«1, ..., n (u1 and yy ere called complementary

i
variables). Aly x and v are complementary in the sense xjv‘1 = 0]V s N )

Complementary Rule:
When a varigble leaves the basis bring the complement of that variable into

basis. Define:

“--au;bi--biv i. L

\Z13)

The basic variables are denoted by the symbol "*". Theinitial tableau is shown below. .

The initial basis contains Ups oen UaViy ceey Vo (primal slacks and dual




slacks) as basic variables. In the tableau,

)
di-l if b1<0(¢'>b1>0)

= 0 otherwise i=1, ..., m

= ...®c =0

fi-l if Ci<0

i=1,2, ...,0,n+1, ..., n+mn
= 0 otherwise .

Basic ,
Variables u1 “m xl --o---xn b d
) ] N
*
Y1 1 2, &, b d
' L]
3 ' 0 '
* y 1 a i b s
. ml mn m =
Cn+1 s e e s cnm Cl 3 L) Cn c
fn+1 20 0 8 0 0 fnﬂ fl LR N ) fn f
yl seceee Ym Vl --....vn e
X ok, k& Variables

Step 1:

]
-bi .
call M, = Max |—= = Max (-bi) i=1, ..., m
b1<0

-c
M, = Max I—fi)-Max (¢)) J=1, ..., n+nm
f >0\ J c,<0 J

] 3

15
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Let Zo(l) = Max (Ml, M (4.1)

2)

(4.1) > b1

+ Zo(l)d1 > 0 and cy + fizo(l) 2 0

If Zo(l) < 0 then terminate. Now there are two cases to consider. The

max value Zo(l) may occur

(1) Corresponding to some j =1, ..., n+m.

(11) Corresponding to some { =1, ..., m .

Case (1):
Z (1) occurs corresponding to j =1 (1.e., Z (1) = —=]=>v, leaves the
o 0 fl 1

basis. (Note: max-ratio cannot occur corresponding to any nonbasic "j" as their
f-1 = 0 .) Since a dual variable leaves the basis, we apply the following dual
complementary pivot.

By our complemen:ary rule, the complementary variable Xy (look up at the

top row of the tableau corresponding to Vi !) enters basis. (Note x, cannot

replace Vi .) By the minimum ratio rule find the basic variable being replaced

bi + zo(l)d1
by X - For this find ratios C for
811
]
i=1, ..., n and a, >0 . (4.2)

Let the minimum of 4.2 occur corresponding to 1 =m . (If no such minimum exists,
?
terminate as we have an unbounded solution (Ray Solution) as a3 OV 1.) So

from min ratio rule, we find X, replaces u and Vg the complementary variable

of v replaces A from the basis.




Using

ml

new basis is shown again by symbol ''*"

a

as pivot element, perform the pivot operation.

Note that the

and this concludes a dual complementary

plvot.
Uy eeeees 29:1 ?g;, x) %, ceeees X
-8y
R a’ 0 e, n b 4
5 ml
. . -a' 1 1
* St T a i b d
Ym-1 1 a' 2 4-1,2 &n-1,n bm-l dm-l
ml
, - - - -
. X 0 1/aml 1 am2 am,n bm dm
Ca+l cn+1n-1 cn+1n 0 €2 n
fn+1 fn+m-1 fn+1n 0 f2 tn
A1 Yo V1 V2 Yo
* * *
where
"
imj-‘—'?i V=2, ...,
ml
(a'
a a', - a' (= VY § = 25 oo
ij 14 i1 a1
Vie=l1l ..., m-1
eI
Po = a3 dn "ot
ml ml
bl
5. @b - 5" -2 - -
b1 bi ail(a' ) Vi iy sy @ 1
ml
- - ! i ——— - . -
di d1 a b Vi=l, ..., m 1
ml

(4.3)
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a'

. _mi)

c,=c¢c, -¢ i j =2, , N +m

J J l(aml

(4.3)
f, = f - f A j =2, ., N +n0
170 1am1)
(Note: f1 = 1)

Case (i1):

Let max-ratio 4.1 occur corresponding to some { = l:~—2>u1 leaves the basis.
Since a primal variable leaves the basis due to 4.1, we apply primal complementary
ptvot which runs as follows.

By our complementary rule, since uy leaves the basis bring Yy into basis

which replaces one of the v 's § = 1, ..., n. To find the basic variable being

3

replaced by ¥y apply max-ratio rule as follows: Form the ratios to find

c, +2 (1)f
Max(‘1 ? j)

a

1}

- ]
vV 1, ..., n and al_1 <0

(4.4)

(As a matter of fact this should be carried out for all elements of lst row
which are < 0 but in the first pivot step we know the first m elements of
Row 1 are > 0 .)

Let the max of 4.4 occur corresponding to variable vn . (If no max exists,

then terminate. We have an unbounded solution (Ray Solution as all a,, <OV ] .)

1

So ¥y replaces v and X the complementary variable of Vo replaces

u Using a);, as the pivot element rerform the pivot operation ac in Case (1)

1
. '
(Note: a o < 0)

Step 2:

With new tableau at hand, form the ratios as in Step 1 to find




. m
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1
Hl-Max(—:—) i =1, , m
d,>0" 4
-c
ﬁz-Max('-:i) =1, ..., n+m
= £
f.>0
i b
z2,(2) = Max[H, M,]. If Z (2) ¢ 0 , then
terminate.
Theorem 4.1:
The new value of 20(2) (after a primal or dual complementary pivot) is
less than or equal to Zo(l)
Proof:
(a) Consider first Case (1) where we have a dual complementary pivot:
Zo(l) = (4.5) and fl =]
1
and by 4.1,
-c ~b;
are e
1 1
and
-c -c
z (1) =—2>—vy. (4.6)
o fl = fj

To prove ZO(Z) < Zo(l) we have to show
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Ml b Zo(l)
and
Mz < Zo(l) .
Now
- !
M, = Max — V{
L
d1>0 i
Note: 4.7 and 4.8 => theorem for Case (i). From min-ratio rule (4.2)
L} L
Em + Zo(].)dm bi + Zo(l)di
a' - al vig
ml i1
by 9
——— 1 — ] ]
2 441 + 2 ailzo(l) < bi + Zo(l)d1 v {
ml ml
L O
[ B e S S
b1 2. %41 +Zo(1) d1 2. 341 :0 v {
ml nl
bi + zo(l)di > 0 by (4.3)
L2 v 10 <z 1)=>6.7 .
3 - 0 l= 0o
1
Similarly

(4.7)

(4.8)
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we will show
cJ + fJ zo(l) > 0 (4.8)
by 4.3,
a' a'
c, +£,Z (1) = |c -c(—?-:-)] +[f -f(—ﬂ,li)]z(l)-
] jo [ B 1 a B} 1 ol o
a'
(c, +2_(1)f,) -—T‘i[c, +2Z (1)f,] > 0=>4.8 .,
k| o b a 1 o 1" =
ml P
W
20 I
by (4.6) 9
by (4.5)
Hence after a dual complementary pivot
2,(2) 2 (1)
(b) Now consider Case (ii) where we have a primal complementary pivot.
1]
-bl
Z (1) =— (4.9)
o d
1
and
-b'
G1)=z (1) > — Vo1
o - d1
- (4.10)

and 2z (1) 3 =1 v 4.
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We will first show:

i1 . Zo(l) f
i.e.,

L.z v 1

i - °

i
B, +2 (D3, 20 v o1
1-3., b, + 2 (l)d =lp' - a' —_ + 7 (1) d' - a' = -
1 oL in\a; 0 1 in\a;

a'
' ' __dn ..,
[b1 + d1 z°(1)] "i [b1 + zo(l)dll >0
e’ N N —
|| |
0

;0

by 4.10 by 4.9

Q.E.D.

To show:




W
S
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By max-ratio rule (4.4)
cj + Zo(l?£1>< <, + Zo(l)fn
%13 - 1n
(Note: ain < 0)
Note
8'
S, = c -c(—,i)
] b n\a;.
a'
£ oo f -f(——.i)
] b n\8;,
c, + Zo(l)f17> c + Zo(l)fn
‘lj - “81n
Note -ain > 0 and -aij >0
8 8
=c-c-—"1+f-f‘—,iz.(1)>0
bl n a1n 3 n i o -
EJ+EJ z2,(1) 20
i.e., szzo(l)
Q.E.D.

Hence the theorem is proved.

After finding ZO(Z) , according to the basic variable which leaves the

basis either primal or dual complementary pivot is done as in Step 1.




Zo(n)

Since we did not use any special property of first pivot, similar arguments proves

Zo(n) < Zo(n -1

Theorem &4.2:

Terminate if Zo(n) <0, and the optimal solutions of both primal and dual

(n) (n)
are bi and N v 1.

Proof:

At Step 1, 4.1 = that

| B
o
<«
[y

1]
b1 + d1 Zo(l)

v

(=]
<«
-

]
H + fi Zo(l) >

At Step n - 1, the min-ratio rule (4.2) of the dual complementary pivot, if a dual

variable leaves the basis or the max-ratio rule (4.4) of the primal complementary

pivot, if a primal variable leaves the basis, guarantees that

(n) (n)
b1 + di Zo(n -1)

| 3%
o
<
[

v

o
«
-

(n) (n)
ci + fi Zo(n - 1) >

Also, we have Zo(n -1) >0 . 4.1 at Step n gives Zo(n) <0 and
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v
o
«
[

(n) (n)
H = b1 + d1 Zo(n) >

(n) (n)
N + fi Zo(n) >

v
o
«
-~

So the above must be true for all values of Zo between Zo(n - 1) and Zo(n)
because of linearity. Note Zo(n -1) >0 and Zo(n) $0.

Hence it is true for Zo =- 0

= bin) e 0 v {
™o v,
i -
Hence the solution we obtain by setting primal basic variables to bin) is
feasible.
Claim:

The dual solution obtained by setting

yi - c[(\:i i = 1. vesy M
vJ cJ 3 1, ..., n

1s feasible for yA < ¢, y > 0 which is the dual L.P. Problem to

Ax > b

x

[ RY
o

Min cx .

Proof:
Since c(n) >0=>y, >0 Note initially at Step n = 0
n+i - 1 - * y P
) _
Crti 0.

So yi's can be considered as multipliers corresponding to the rows of -A
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matrix which gives cjn) {EEI e s 0, el
(m) _ 0 , .
cJ c.1 + y( aJ) v

where a, 1s jth column of A . Since

b

o
I
and
cjn) >0
= that cJ - yaJ >0 vV § or yaj N cJ V J=y 1is feasible for dual.

Q.E.D. (Claim)

Note our primal and dual complementary pivot rule maintains the complementarity
between primal and dual variables, i.e., either ¥y or u1 is in the basis but
not both. Similarly either x, or v, is in the basis but not both. Hence
the complementary slackness is also satisfied by the primal and dual solution gt

from bin) and cin) . Hence they are optimal since by claim they are feasible.

Finiteness of the Algorithm:

Under nondegeneracy assumption (i.e., no ties when forming max-ratio or
min-ratio rule) Zo(n) decreases with n (proved already), and since we terminate

when Zo(n) S 0 the algorithm clearly ends in finite number of steps.
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Comments:

Those who are familiar with the complementary pivot theory, can easily see
that .n our algorithm we are essentially applying the Lemke's method but to a
reduced tableau, taking advantage of the structure of M-matrix.

Dantzig [1] has claimed that the Lemke's complementary pivot method to sclve j
linear programs is indentical with respect to the pivot steps to his self-dual I
parametric algorithm {1]). Though this fact 1s not very obvious to see, using our
algorithm we can gsee that the pivot steps are identical to those in the self-dual
parametric algorithm though Dantzig uses the idea of primal and dual simplex method
while we make use of the complementarity between the variables. Since our method
is a condensed form of Lemke's method in some sense, we have also shown that
Dantzig's claim is true.

Illustration:
Consider the following linear program: [1])
Minimize 3x1 = 3x2
Subject to -le - 2x2 > -10
i
(
- i
Xy X, 2 1
Xy + 2x2 >1
X X, 2 0
Using the algorithm of Section 4, we start with the following initial tableau. i
{
|
|
~
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basis uy u, U, 3 X, b d
* YUy 1 0 0 2 2 10 0
* uy 0 1 0 -1 (:) -1 1
* Uy 0 0 1 1 -2 -1 1
0 0 0 3 -3 %
o o o o 1| ¢
y y y v v
1 Y2 Y3 0 N I
Basic variables are designated by the symbol "*"
Step 1
M, = Max {+1, +1} =1
L d >0
1
M, = Max {3} =3
£j>0

2 (1) =3 and = v
complementary pivot rule.

corresponding to v x

min {%?
>0

15

v

2)

rule as .

1
a

replaces 2

shown below

=1 +1

from the basis.

a dual variable leaves the basis. So we apply dual

2
The complementary virable (looking up the tableau

enters the basis and replaces by the min. ratio

Y2

= 1 . Hence Yy the complementary variable of Yy

2

The new tableau after the pivot operation is as
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Uy u, ug X, X, b d
* uy 1 -2 0 4 0 12 -2
* Xy 0 1 0 -1 1 -1 1
* u, 0 2 1 <::) 0 3 3
0 3 0 0 0 c
0 -1 0 1 0 f
Vi y y v v
1 Y2 Y3 1 V2 I

Step 2:

Ml = Max {1, 1} = 1

M, = Max {0} = O

2

Z°(2) = 1 since we have ties here we just pick one, say, ug . So uy , @
primal variable leaves the basis and we use primal complementary pivot rule by which

Y3 enters the basis and replaces by max ratio rule v, as _max {Q:{_l} = -1 so

a, <0
80 X replaces ug . The pivot element is circled. The newaiableau after the
plvot is as shown below:
LI TR TN | (LR
* uy 1 6 4 0 0 0 10
* x, 0 -1 -1 0 1 2 =2
* 3 0 -2 -1 1 0 3 -3
il
0 3 0 0 0 e




-0
M, = ;10 =0

Z°(3) = 0 terminate optimal basis is shown by * and their values by looking

up at the corresponding b and ¢ Rowﬁ, i.e.,

U = 0 and y, * k]
x, = 2 Yy ® 0
x, = 3

(Primal basis) (Dual basis)
The others The others

xy = 0 y, - 0

u, -0 vi " 0

v, = 0

Minimum = 3.3 - 3.2 = 9-6 = 2
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